

Operational Technology Assessment Report

Prepared For New Bay Energy

Prepared By John Smith Fortinet

Report Date Sep 15, 2022

Executive Summary

We aggregated key findings from our OT assessment within the Executive Summary below. While the highlights are listed below, a more detailed view of each section follows. Be sure to review the Recommended Actions page at the end of this report for actionable steps your organization can take to protect your OT assets, validate industrial application usage, and identify potentially susceptible OT hosts.

Security

Note that any threats observed within this report have potentially bypassed your existing network security controls, so they should be considered active risks until otherwise fully reconciled.

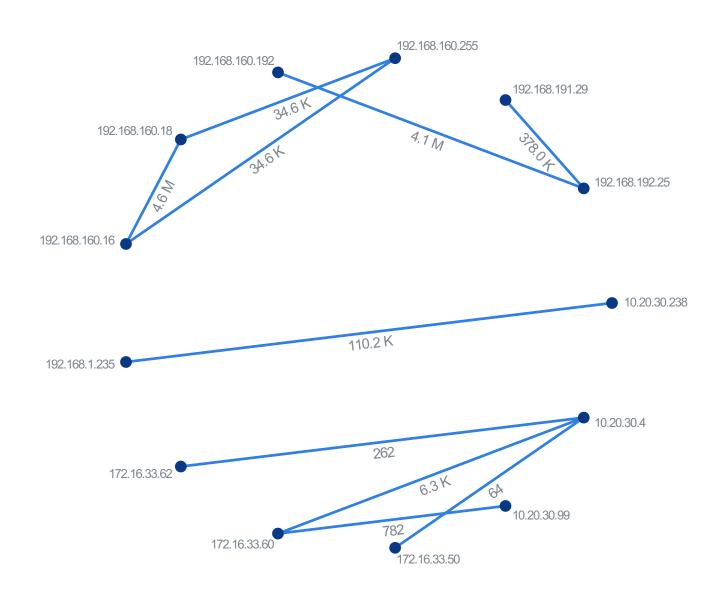
Applications

Applications in use within OT environments should be constrained and monitored. Understanding the industrial applications within your network can help define corporate use policies, set access controls on airgapped networks, and minimize unnecessary chatter.

Utilization

аб4.0мв Average OT Bandwidth Per Day

Understanding overall utilization on your OT network can help with capacity planning and streamlining network traffic over time.


Security

- 4,172 application vulnerability attacks detected
 3 malware and/or botnets discovered
- 6 devices attempting external connection
- 6 OT application vulnerability attacks detected

Activity Between OT Devices

Understanding activity derived from the industrial network can be useful when trying to troubleshoot application communications between devices. The visualization below tracks OT device application log counts (which in turn indicates a higher degree of activity). Note that only OT device activity is shown (any host sending/receiving industrial application traffic) and that certain industrial protocols can use multiple function calls over a single extended session.

Top Application Vulnerability Exploits Detected

Application vulnerabilities can be exploited to compromise the security of your network. The FortiGuard research team analyzes these vulnerabilities and then develops signatures to detect them. FortiGuard currently leverages a database of more than 5,800 known application threats to detect attacks that evade traditional firewall systems. For more information on application vulnerabilities, please refer to FortiGuard at: http://www.fortiguard.com/intrusion.

#	Risk	Threat Name	Туре	Victims	Sources	Count
1	5	Bash.Function.Definitions.Remote.Code.Execution	OS Command Injection	38	2	2,493
2	5	MS.GDIPIus.JPEG.Buffer.Overflow	Buffer Errors	3	2	294
3	5	MS.IE.MSXML.Object.Handling.Code.Execution	Buffer Errors	1	1	130
4	5	ThinkPHP.Controller.Parameter.Remote.Code.Execution	Code Execution	1	1	4
5	5	Honeywell.OPOS.Multiple.ActiveX.Open.Method.Buffer. Overflow	Buffer Errors	2	1	5
6	5	Telerik.Web.UI.RadAsyncUpload.Handling.Arbitrary.File. Upload	Command Injection	2	1	2
7	5	Unitronics.VisiLogic.OPLC.TeeCommander.Memory. Corruption	Buffer Errors	1	1	2
8	5	IBM.Rational.ClearQuest.Username.Parameter.SQL. Injection	SQL Injection	1	1	1
9	4	LG.Smart.IP.Camera.Unauthenticated.Backup.File. Download	Permission/Privilege/Access Control	2	1	537
10	4	IISadmin.ISM.DLL.Access	Information Disclosure	29	1	169

Top Industrial Application Vulnerabilities Detected

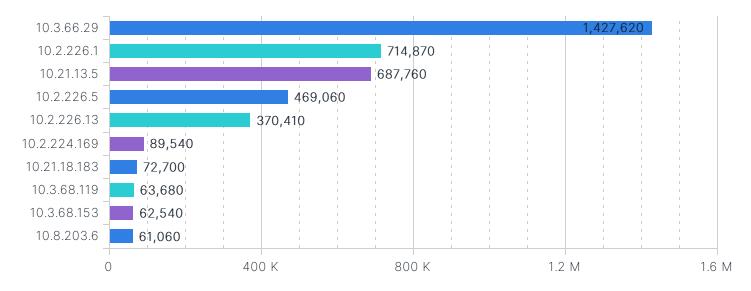
Unless the industrial applications you're using are high volume, they may not appear on the list of top application vulnerabilities. This table helps identify application vulnerabilities that are specific to OT networks by using an enhanced set of industrial signatures. Any vulnerabilities within this table should be addressed immediately as they are known to specifically target your industrial infrastructure.

#	Risk	Threat Name	Туре	Victims	Sources	Count
1	5	Honeywell.OPOS.Multiple.ActiveX.Open.Method.Buffer. Overflow	Buffer Errors	2	1	5
2	5	Unitronics.VisiLogic.OPLC.TeeCommander.Memory. Corruption	Buffer Errors	1	1	2
3	3	Schneider.Electric.GP-Pro.EX.ParseAPI.Heap.Buffer. Overflow	Buffer Errors	3	1	112
4	2	Siemens.SIMATIC.WinCC.Flexible.Runtime.Stack.Buffer. Overflow	Buffer Errors	1	1	98
5	2	Trihedral.VTScada.WAP.Directory.Traversal	Path Traversal	3	1	14
6	1	Modbus.TCP.Report.Server.Info	Permission/Privilege/Access Control	1	1	12

Top Malware, Botnets and Spyware/Adware Detected

There are numerous channels that cybercriminals use to distribute malware. Most common methods motivate users to open an infected file in an email attachment, download an infected file, or click on a link leading to a malicious site. During the security assessment, Fortinet identified a number of malware and botnet-related events which indicate malicious file downloads or connections to botnet command and control sites.

#	Malware Name	Туре	Application	Victims	Sources	Count
1	Asprox.Botnet	Botnet C&C	Asprox.Botnet	5	1	6
2	W32/NGVCK	Virus	HTTP	1	1	3
3	W32/ForeignRansom.583D!tr	Virus	HTTP	1	1	1


Devices Attempting External Connection

Generally, OT devices should not be communicating with IPs external to the organization. This table lists any devices which are communicating with external IPs sorted by last communication date. Be sure to review these hosts and verify that any external connections are sanctioned.

#	Host/IP	Session Count Last External Application	Last External Connection
1	10.3.66.29	272,300 Proxy.HTTP	Jan 11, 2022 5:07 PM
2	10.2.226.1	77,091 Splashtop	Jan 10, 2022 7:34 PM
3	10.2.226.5	353,514 VNC	Jan 9, 2022 10:08 PM
4	10.21.13.5	6,902 Windows.Powershell	Jan 8, 2022 7:38 PM
5	10.2.224.169	6,900 VNC	Jan 6, 2022 9:12 AM
6	10.8.203.6	13,803 Proxy.HTTP	Jan 5, 2022 11:22 AM

At-Risk Devices and Hosts

Based on the types of activity exhibited by an individual host, we can approximate the trustworthiness of each individual client. This client reputation is based on key factors such as websites browsed, applications used and inbound/outbound destinations utilized. Ultimately, we can create an overall threat score by looking at the aggregated activity used by each individual host.

Applications

- 84 total OT applications detected
- 8 remote access applications detected
- 32.0% percentage of OT traffic

- 69%:31% IT vs. OT Application Mix
- 185 IT applications detected
- 269 total applications detected

High Risk Applications

The FortiGuard research team assigns a risk rating of 1 to 5 to an application based on the application behavioral characteristics. The risk rating can help administrators to identify the high risk applications quickly and make a better decision on the application control policy. Applications listed below were assigned a risk rating of 4 or higher.

#	Risk	Application	Category	Technology	Users	Bandwidth	Sessions
1	5	Proxy.HTTP	Proxy	Network-Protocol	26	332.08 MB	93,688
2	4	Citrix.Receiver	Remote.Access	Client-Server	11	8.25 MB	2,945
3	4	RDP	Remote.Access	Client-Server	4	41.83 MB	200
4	4	VNC	Remote.Access	Client-Server	1	25.53 KB	180
5	4	Splashtop	Remote.Access	Client-Server	1	306.63 KB	18
6	4	Windows.Powershell	Remote.Access	Client-Server	1	9.81 KB	2

High Risk Industrial Applications

Industrial applications which are classified as high risk should be investigated. This table shows the highest risk industrial applications detected on your OT network sorted by risk rating. Typically, industrial applications by their very nature are lower risk, but if there are industrial applications with risk ratings 4+, you should investigate further.

#	Risk	Application	Category	Technology	Bandwidth	Sessions
1	3	IEC.60870.5.104_Control.Functions.Unnumbered	Industrial	Client-Server	6.31 MB	3,688
2	3	Vedeer-Root.ATG.Access	Industrial	Client-Server	5.25 MB	2,475

Industrial Applications In Use By Bandwidth

Industrial application use can sometimes be buried in a sea of common IT traffic. This table highlights industrial specific traffic based on bandwidth usage. Sometimes abnormal bandwidth usage can indicate data exfiltration; be sure to review the application protocol being used by the highest bandwidth industrial applications.

#	Risk	Application	Category	Technology	Hosts	Bandwidth	Sessions
1	2	OPC.UA_Close.Secure.Channel.Request	Industrial	Client-Server	1	1.21 GB	4,322
2	2	OPC.UA_Publish.Request	Industrial	Client-Server	1	842.05 MB	309
3	2	EtherNet.IP_Unregister.Session	Industrial	Client-Server	1	249.81 MB	1
4	2	CIP_Response.Success	Industrial	Client-Server	1	159.15 MB	1
5	2	CIP.CM.ForwardClose	Industrial	Client-Server	1	104.49 MB	2
6	2	OPC.UA_Secure.Conversation.Message	Industrial	Client-Server	1	39.90 MB	1
7	2	BACnet_Who.Is	Industrial	Client-Server	2	3.04 MB	8,653
8	2	OPC.UA_Read.Request	Industrial	Client-Server	1	37.07 KB	1
9	2	Modbus_Report.Slave.ID	Industrial	Client-Server	1	31.97 KB	246
10	2	OPC.UA_Error.Message	Industrial	Client-Server	1	13.12 KB	15

Industrial Applications In Use By Sessions

High session use amongst industrial applications can be indicative of security or (more commonly) issues related to retransmission. Keep in mind that industrial application sessions by their very nature can establish connections for extended periods of time.

#	Risk	Application	Category	Technology	Hosts	Bandwidth	Sessions
1	2	OPC.UA_Close.Secure.Channel.Request	Industrial	Client-Server	1	1.21 GB	43,399
2	2	BACnet_Who.Is	Industrial	Client-Server	2	3.04 MB	8,653
3	2	Modbus_Report.Slave.ID	Industrial	Client-Server	1	31.97 KB	246
4	2	OPC.UA_Error.Message	Industrial	Client-Server	1	13.12 KB	15
5	2	OPC.UA_Publish.Request	Industrial	Client-Server	1	842.05 MB	3
6	2	CIP.CM.ForwardClose	Industrial	Client-Server	1	104.49 MB	2
7	2	OPC.UA_Open.Secure.Channel.Request	Industrial	Client-Server	1	1.03 KB	2
8	2	EtherNet.IP_Unregister.Session	Industrial	Client-Server	1	249.81 MB	1
9	2	OPC.UA_Hello.Message	Industrial	Client-Server	1	287 B	1
10	2	OPC.UA_Get.Endpoints.Request	Industrial	Client-Server	1	842 B	1

IT Applications In Use By Bandwidth

This table highlights IT specific traffic based on bandwidth usage. Sometimes abnormal bandwidth usage can indicate data exfiltration; be sure to review the application protocol being used by the highest bandwidth IT applications.

#	Risk	Application	Category	Technology	Hosts	Bandwidth	Sessions
1	2	HTTP.Video	Video/Audio	Browser-Based	2	109.24 GB	307
2	5	Proxy.HTTP	Proxy	Network-Protocol	26	66.08 GB	393,688
3	2	RTSP	Video/Audio	Network-Protocol	1	56.53 GB	24
4	2	MS.Windows.Update	Update	Client-Server	24	53.15 GB	40,025
5	2	Stream.Media	Video/Audio	Browser-Based	1	47.10 GB	357
6	2	Citrix.Services	Collaboration	Browser-Based,Client-Server	14	17.52 GB	600
7	2	LDAP	Network.Service	Network-Protocol	103	10.56 GB	168,555
8	3	HTTPS.BROWSER	Web.Client	Browser-Based	161	10.50 GB	122,309
9	2	Facebook_Video.Play	Video/Audio	Browser-Based	4	8.60 GB	448
10	2	SMB.v3	Network.Service	Client-Server	95	4.38 GB	72,615

IT Applications In Use By Sessions

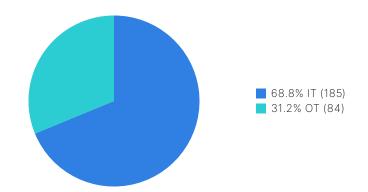
High session use amongst IT applications can be indicative of security or (more commonly) issues related to retransmission. Keep in mind that IT application sessions by their very nature can establish connections for extended periods of time.

#	Risk	Application	Category	Technology	Hosts	Bandwidth	Sessions
1	2	NTP	Network.Service	Network-Protocol	101	978.88 MB	1,661,146
2	2	DNS	Network.Service	Network-Protocol	36	435.78 MB	1,414,697
3	2	Kerberos	Network.Service	Network-Protocol	92	3.64 GB	760,060
4	2	UPnP	Network.Service	Network-Protocol	86	452.71 MB	725,464
5	5	Proxy.HTTP	Proxy	Network-Protocol	26	66.08 GB	393,688
6	2	LDAP	Network.Service	Network-Protocol	103	10.56 GB	168,555
7	2	MS.RPC	Network.Service	Client-Server	94	1.77 GB	135,248
8	3	HTTPS.BROWSER	Web.Client	Browser-Based	161	10.50 GB	122,309
9	2	LLMNR	Network.Service	Network-Protocol	81	15.77 MB	108,977
10	2	ICMP	Network.Service	Network-Protocol	75	141.58 MB	78,192

Industrial Applications Communications Details

It is not uncommon for OT protocols to encapsulate files during day to day communications. This table renders any files that are traversing via OT protocols. Potentially malicious code could exfiltrate files from your OT network and this visualization helps you ensure any files being transported are authorized.

#	Application	Message	Source IP	Destination IP	Input/Output Ban	dwidth
1	Modbus_Encapsulated. Interface.Transport	0e 01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.3.66.29	10.2.224.169	others	63 B
2	Modbus_Encapsulated. Interface.Transport	0e 01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.3.17.238	10.4.23.3	others	44 B
3	Modbus_Encapsulated. Interface.Transport	0e 01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.3.66.29	10.2.226.1	others	42 B
4	Modbus_Encapsulated. Interface.Transport.Read. Device.Info	01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.2.226.5	10.2.226.1	others	115 B
5	Modbus_Encapsulated. Interface.Transport.Read. Device.Info	01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.8.203.6	10.8.115.7	others	293 B
6	Modbus_Encapsulated. Interface.Transport.Read. Device.Info	01 81 00 00 03 00 12 53 63 68 6e 65 69 64 65 72 20 45 6c 65 63 74 72 69 63 01 0a 54 4d 32 32 31 43 45 31 36 54 02 04 56 31 2e 30	10.3.68.153	10.3.17.238	others	88 B
7	Modbus_Read.Input.Registers	14 00 47 00 54 00 47 00 54 16 9d 00 00 00 00 00 00 00 00 00 00	10.21.18.183	10.3.66.29	others	163 B
8	Modbus_Read.Input.Registers	14 00 46 00 58 00 46 00 58 16 9d 00 00 00 00 00 00 00 00 00 00	10.3.66.29	10.4.23.3	others	228 B

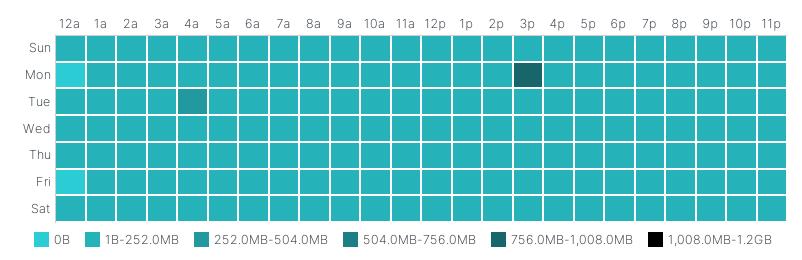

Remote Access Traffic to OT Devices

Hosts which are establishing remote access connections with OT devices should be scrutinized. This table lists remote applications detected which have been communicating with OT devices. Be sure to audit whether or not remote access is allowed to these OT devices and from whom the requests are originating.

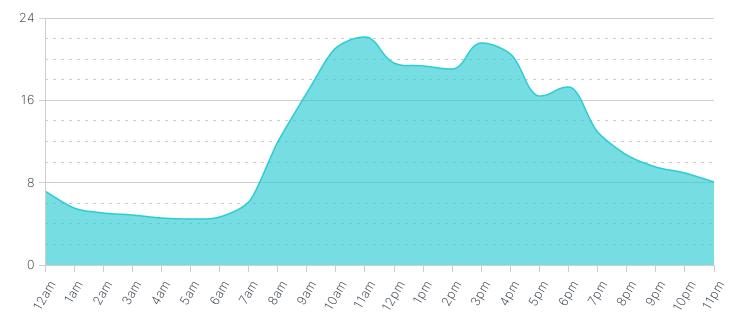
#	Host/IP	Application	Bandwidth	Sessions Source IP	Last Session
1	10.3.66.29	Proxy.HTTP	145.99 MB	83 18.33.48.117	Jan 9, 2022 6:11 PM
2	10.2.226.1	Splashtop	130.62 MB	14 226.15.77.181	Jan 8, 2022 9:51 PM
3	10.21.13.5	Windows.Powershell	113.10 MB	11 12.44.18.62	Jan 6, 2022 3:51 AM
4	10.8.203.6	Proxy.HTTP	104.27 MB	8 173.73.39.119	Jan 5, 2022 12:39 PM
5	10.2.226.5	VNC	92.26 MB	3 28.116.195.94	Jan 4, 2022 8:23 AM
6	10.21.18.183	VNC	73.09 MB	2 10.3.66.29	Jan 3, 2022 6:08 PM
7	10.3.66.29	VNC	64.19 MB	2 10.21.18.183	Jan 2, 2022 6:07 PM
8	10.2.226.1	Windows.Powershell	62.93 MB	1 105.28.224.228	Jan 2, 2022 11:05 AM
9	10.2.224.169	Splashtop	59.09 MB	1 226.15.77.181	Dec 30, 2021 10:04 PM
10	10.2.226.5	Windows.Powershell	56.08 MB	1 10.33.48.117	Dec 26, 2021 3:05 PM

IT vs. OT Applications

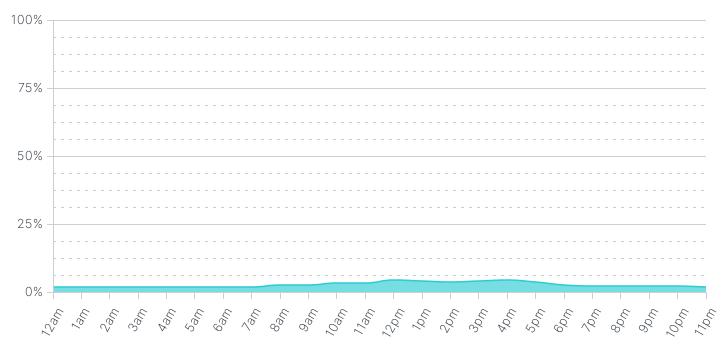
While OT networks are primarily dedicated for industrial traffic, the amount of common IT applications running on them is usually high. This pie chart visualization shows the percentage of OT versus IT applications (as measured by a distinct application count). In full hybrid environments, it's not uncommon for OT traffic to be overshadowed entirely by IT traffic.


Utilization

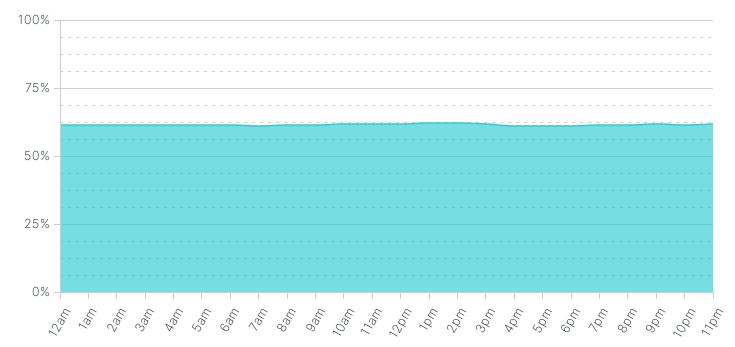
- 2.7GB total bandwidth used
- **13** total OT devices detected
- **364.0MB** average OT bandwidth per day
- 68%:32% IT vs. OT bandwidth mix
- 99%:1% IT vs. OT session mix


OT Application Bandwidth Utilization

By looking at OT bandwidth usage when distributed over an average day, administrators can better understand their organizational ISP connection and interface speed requirements. Bandwidth can also be optimized on an application basis (using throttling), specific hosts can be prioritized during peak traffic times, and firmware updates can be rescheduled outside of working hours.


Average Log Rate by Hour

Understanding average log rates is extremely beneficial when sizing a security environment from a performance standpoint. Higher average log rates applied to specific hours usually indicate peak traffic usage and throughput. Calculating enterprisewide log rates can also help when sizing for upstream logging/analytics devices such as FortiAnalyzer. Keep in mind, the log rates presented here are with the full logging capabilities of the FortiGate enabled and will include all log types (traffic, antivirus, application, IPS, web and system events).

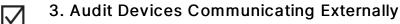

Average FortiGate CPU Usage by Hour

CPU usage of a FortiGate is often used to size a final solution properly. By looking at an hourly breakdown of CPU utilization statistics, it's easy to get a good idea about how FortiGates will perform in the target network. Typically, with higher throughput, more logs are generated. If 75% or more utilization is sustained over a long period of time, either a more powerful model or revised architecture may be required for final implementation.

Average FortiGate Memory Usage by Hour

Similarly, memory usage over time is an indicator of the FortiGate's sustainability in the target network environment. Memory usage may remain high even when throughput is relatively low due to logging activity (or queued logging activity) over time.

Recommendations


1. Quarantine Botnet Hosts

Botnet activity was detected on at least one host within your network. You should immediate quarantine any botnet hosts (e.g. remove them from the network) and investigate any associated breach activity.

2. Reconcile External Remote Access

It is not uncommon to use remote access applications to access industrial systems. However, you should audit the remote access applications listed in this report to ensure that only legitimate access is occurring within your OT segment.

Devices within an OT environment are normally air-gapped or isolated into specific industrial segments on the network. While running the assessment, we detected devices attempting to communicate externally; this may indicate malicious C&C activity and is worthy of additional investigation.

4. Verify Firmware on OT Devices

We detected OT specific application attacks on your network. Verify that potentially affected devices are running the latest firmware and are not an exposure risk to application vulnerabilities.

5. Audit High Risk Hosts for Attack Susceptibility

Some hosts on your network are exhibiting a high degree of suspicious behavior (which could include originating lateral attacks, potential malware installation, or botnet activity detected). Review the hosts most at risk, and quarantine those devices until you can determine the root cause of the suspicious behavior.

